Kinetics and Mechanism of the Oxidation of Hydroxylamine by Aqueous Bromine

Richard C. Beckwith, John N. Cooper,? and Dale W. Margerum*

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

Received May 4, 1994@

The kinetics, stoichiometry, and mechanism of the reaction between hydroxylamine and bromine are determined from pH 0 to 6. Acid suppresses the rate of reaction because $NH₃OH⁺$ is not reactive with Br₂. At low pH, nitrous acid is the first observable product and the stoichiometry of the initial reaction is 2:1 $[Br_2]_T:[NH_2OH]_T$ (where $[Br_2]_{T} = [Br_2] + [Br_3^-]$ and $[NH_2OH]_{T} = [NH_3OH^+] + [NH_2OH]$). A slower subsequent reaction of $NH₃OH⁺$ with HONO to produce N₂O makes the overall stoichiometry 2:2. The proposed reaction sequence corresponds to the following changes in nitrogen oxidation states: $N(-I) \rightarrow N(I) \rightarrow N(III) \rightarrow N(I)$. At pH 0-2 the reaction between $[\text{Br}_2]_T$ and excess $[\text{NH}_2\text{OH}]_T$ is measured by stopped-flow spectrophotometry; the rate constant for Br_2 and NH_2OH is 1.8×10^9 M⁻¹ s⁻¹ at 25.0 °C, $\mu = 0.50$ M. The activat = 15 kJ mol⁻¹ and ΔS^{\dagger} = -15 J mol⁻¹ K⁻¹, but these values are temperature dependent because ΔC_p^{\dagger} = -440 J mol⁻¹ K⁻¹. A parallel Br₃⁻ path has a rate constant of 2.4 \times 10⁸ M⁻¹ s⁻¹ at 25.0 °C. The first mechanistic step is postulated to be Br⁺ transfer to form an intermediate, BrNHOH. This intermediate reacts rapidly with a second equivalent of Br_2 to form Br_2NOH . Rapid stepwise loss of Br_1 first gives BrNO and then HONO. At pH 5-6 the [NH₂OH]_T reaction with $[Br_2]_T$ is much faster and is measured by the pulsed-accelerated-flow method. The initial step appears to consume all the Br_2 , but BrNHOH disproportionates to form NH_2OH and Br_2NOH ; further stepwise hydrolysis gives $NO₂⁻$ and Br⁻.

Introduction

Recent work in this laboratory' has shown that chlorine rapidly oxidizes hydroxylamine in acid solutions. Even with excess NH₃OH⁺, three chlorines react in rapid succession to convert the $N(-I)$ oxidation state of hydroxylamine to a $N(V)$ intermediate that is proposed to be $Cl₃NO$. This reaction is followed by stepwise reduction of the N(V) species with excess hydroxylamine, first to give nitrous acid, N(III), and then to give nitrous oxide, N(1).

By contrast, bromine oxidation of hydroxylamine was reported by Kudesia² in 1976 to have a rate constant of only $1.6 \text{ M}^{-1} \text{ s}^{-1}$, which is 9 orders of magnitude slower than the chlorine rate constant.¹ In 1984, Jonnalagadda³ reported a rate constant of only 0.143 M^{-1} s⁻¹ for the reaction between NH₂-OH and HOBr. The magnitude of these rate constants appears to be unreasonably small, because the $Br₂$ and HOBr rate constants with NH2Cl (which is a much weaker base and poorer nucleophile than NH₂OH) are 4.18 \times 10⁸ M⁻¹ s⁻¹ and 2.86 \times $10^5 M^{-1} s^{-1}$, respectively.⁴ Our present work shows that bromine oxidation of hydroxylamine is actually very rapid; the rate constant is more than 10^9 times larger than previously reported.² With excess hydroxylamine the bromine oxidation does not go to N(V), but rather to N(III), and the first observable product is nitrous acid. This is followed by the reduction of nitrous acid by hydroxylamine to give nitrous oxide. 5.6

We determine the reaction stoichiometry as a function of time and find no evidence under our conditions for the formation of $HNO₃$ (proposed by Jonnalagadda³). Although nitric acid has

(1) **Cooper, J. N.; Margerum, D. W.** *Inorg. Chem.* **1993,32,5905-5910. (2) Kudesia, V. P.** *Acta Cienc. Indica* **1976, 2, 237-238.**

been reported⁷ as a product when bromine oxidizes hydroxylamine, Kurtenacker and Neusser⁸ pointed out that this occurs only when large ratios (40 to 60-fold) of $[Br_2]_T/[NH_2OH]_T$ are used. Even a 19-fold excess of $[Br_2]_T$ gives only N₂O. The conditions in our current study have total hydroxylamine $(NH₂ OH]_T = [NH₃OH⁺] + [NH₂OH]$) in large excess over total bromine ($[Br_2]_T = [Br_2] + [Br_3^-]$).

The protonation constant (K_H) for hydroxylamine (eq 1) is 1.01×10^6 M⁻¹ at 25 °C and an ionic strength (μ) of 0.50 M⁹ Aqueous bromine in the presence of bromide ion is in rapid

$$
NH2OH + H+ \stackrel{KH}{\longrightarrow} NH3OH+
$$
 (1)

equilibrium with the tribromide ion (eq 2), where $K_{\text{Br}} = 16.8$

$$
Br_2 + Br^- \stackrel{K_{Br}}{\Longleftarrow} Br_3^- \tag{2}
$$

 M^{-1} at 25 °C and $\mu = 0.50$ M.¹⁰ The value for K_{Br} was measured by Scaife and Tyrrell¹⁰ in molality units, and we converted it to molarity. In the present work, the kinetics of bromine loss are studied as a function of the concentrations of Br^- and $[NH_2OH]_T$ from pH 0 to 6. Stopped-flow spectrophotometry is used for the higher acidities, and the pulsedaccelerated-flow method¹¹⁻¹³ is used for the more rapid reactions from pH 2 to 6. The proposed $NH₂OH$ and $Br₂$ mechanisms involve Br^+ -transfer reactions followed by Br^- elimination to

- **(8) Kurtenacker, A,; Neusser, R.** *2. Anorg. Allg. Chem.* **1923, 131, 27- 47.**
- **(9) Lumme, P.; Lahermo, P.; Tummavuori, J.** *Acta* **Chem.** *Scand.* **1965,** *19,* **2175-2188.**
- **(10) Scaife, D. B.; Tyrrell, H. J. V.** *J. Chem. SOC.* **1958, 386-392.**
- **(11) Jacobs, S. A,; Nemeth, M. T.; Gamer,** *G.* **W.; Ridley, T. Y.; Mareerum. D. W.** *Anal. Chem.* **1984,** *56,* **1058-1065.**
- (12) Nemeth, M. T.; Fogelman, K. D.; Ridley, T. Y.; Margerum, D. W. *Anal. Chem.* **1987,** *59,* **283-291.**
- (13) Fogelman, K. D.; Walker, D. M.; Margerum, D. W. *Inorg. Chem.* **1989**, 28, 986-993.

^{&#}x27; **On sabbatical leave from Bucknell University, Lewisburg, PA 17837.**

[@] **Abstract published in** *Advance ACS Abstracts,* **October 1, 1994.**

⁽³⁾ Jonnalagadda, S. B. *In?. J. Chem. Kine?.* **1984,** *16,* **1287-1299.**

⁽⁴⁾ Gazda, M.; Margerum, D. W. *Inorg.* **Chem. 1994, 33, 118-123.**

⁽⁵⁾ Hughes, M. N.; Stedman, *G. J. Chem. SOC.* **1963, 2824-2830.**

⁽⁶⁾ Morgan, T. D. B.; Hughes, M. N.; Stedman, G. J. *Chem.* **SOC.** *B* **1968, 344-349.**

⁽⁷⁾ Rupp, E; Mader, H. *Arch. Pharm.* **1913, 251, 295.**

Table **1.** Spectral Characteristics of Relevant Species

species	λ_{max} , nm	ϵ , M ⁻¹ cm ⁻¹	ref
NO ₂	355	23.3	20
HONO	371	54	
NO ₃	302	7.24	20
Br ₂	390	175	21
Br_3^-	266	40,900	a
HOBr	260	100	21

Wang, T. **X.;** Kelley, M. D.; Cooper, J. N.; Beckwith, R. C.; Margerum, D. *W. Inorg. Chem.* Submitted for publication.

Table 2. Equilibrium Constants at 25.0 °C, $\mu = 0.50$ M

reaction	equilibr const	ref
$Br2 + Br- \rightarrow Br3$	$16.8 M^{-1}$	10
$Br_2 + H_2O \rightleftharpoons HOBr + Br^- + H^+$	2.2×10^{-9} M ²	19
$OBr^- + H^+ \rightarrow HOBr$	6.3×10^8 M ⁻¹	18
H^+ + NH ₂ OH \rightarrow NH ₃ OH ⁺	1.01×10^6 M ⁻¹	q
$HONO \rightarrow H^+ + NO_2^-$	1.1×10^{-3} M	22

give nitrous acid (HONO). Similar halogen cation transfer mechanisms have been found with other nucleophiles. $4,13-19$

Experimental Section

Reagents. Distilled, deionized water was used for all solutions. Ionic strength was adjusted to $\mu = 0.5$ M with recrystallized NaClO₄. Solutions of NaC104 and NaBr were prepared from the solid reagents and were standardized gravimetrically. Acidity was adjusted with HC104 solutions. An Orion Model SA 720 Research digital pH meter and a Coming combination pH electrode were used to measure pH values above 1.5. These pH values were corrected to $p[H^+]$ values at 25.0 °C and $\mu = 0.50$ M based on electrode calibration by titration of standardized HC104 and NaOH. All chemicals were reagent grade. The concentrations given for kinetic reactions are post-mixing values. Table 1 gives spectrophotometric parameters for species of interest,^{20,21} and Table 2 gives related equilibrium constants.^{18,19,22}

Solutions of $[Br_2]_T$ were prepared by adding liquid bromine to acidified water and were standardized spectrophotometrically at 390 nm. Sodium bromide was added after standardization to give the desired levels of $Br₃^-$.

Solutions of $NH₂OH$ were prepared from $NH₂OH₂OH₂OH$. (Sigma) and were standardized by oxidation with Fe(III) in 1 M H_2SO_4 (eq 3).²³

After the solution was allowed to be in a least 5 min, it was cooled,
\n
$$
2NH_2OH + 2Fe_2(SO_4)_3 \longrightarrow
$$
\n
$$
N_2O + 4FeSO_4 + 2H_2SO_4 + H_2O
$$
\n(3)

and the Fe(II) formed was titrated with standard $(NH₄)₂Ce(NO₃)₆$. This method is superior to the bromate-thiosulfate titration procedure, 24 which we found was not a satisfactory procedure to standardize hydroxylamine due to poor accuracy and precision.

Kinetic and Spectrophotometric **Methods.** Spectral measurements for the stoichiometry of intermediates and data for slower reactions were obtained with a Perkin-Elmer Lambda 9 UV-vis-near-IR

- (14) Yiin, B. S.; Walker, D. M.; Margerum, D. W. *Inorg. Chem.* **1987,26,** 3435-3441.
- (15) Nagy, J. C.; Kumar, K.; Margerum, D. W. *Inorg. Chem.* **1988, 27,** 2773-2780.
- (16) Gerritsen, C. M.; Margerum, D. W. *Inorg. Chem.* **1990, 29,** 2757- 2762.
- (17) Johnson, D. W.; Margerum, D. W. *Inorg. Chem.* **1991,** *30,* 4845- 485 1.
- (18) Troy, **R.** C.; Margerum, D. W. *Inorg. Chem.* **1991,** *30,* 3538-3543. (19) Beckwith, **R.** C.; Wang, T. X.; Margerum, D. W. To be submitted for
- (20) Wetters, J. H.; Uglum, K. L. *Anal. Chem.* **1970, 42,** 335-340. publication.
- (21) Soulard, M.; Block, F.; Hatterer, *A. J. Chem. Soc., Dalton Trans.* **1981,** 2300-2310.
- (22) Tummavuori, **J.;** Lumme, P. *Acta Chem. Scand.* **1968, 22,** 2003- 2011.
- (23) Bray, W. C.; Simpson, M. E.; MacKenzie, **A.** *A. J. Am. Chem. Soc.* **1919,** *41,* 1363-1378.
- (24) *Vogel's Textbook* of *Quantitative Chemical Analysis,* **5th** ed.; Longman Scientific and Technical: New York, 1989; **p** 408.

spectrophotometer interfaced to a Zenith 386/20 PC. Faster kinetic determinations used either a Durrum stopped-flow spectrophotometer (Model D-110 with an optical pathlength of 1.88 cm) or a Hi-Tech stopped-flow spectrophotometer (Model SF-3L equipped with a balltype mixing-observation cell with a 1.60 cm path²⁵). Both were interfaced to a Zenith 15 1 **PC** with a Metrabyte DASH-16 A/D interface card. Pseudo-fist-order rate constants were obtained from plots of ln- $(A - A_{\infty})$ versus time, where A is the absorbance of $[Br_2]_T$ for the initial reaction or of HONO for the slower subsequent reaction. Stoppedflow rate constants (k_{raw}) larger than 30 s^{-1} were corrected for mixing limitations of the instruments by using eq 4, where $k_{\text{mix}} = 1700 \text{ s}^{-1}$ for the Durrum²⁶ stopped-flow and 2900 s^{-1} for the Hi-Tech.²⁷

$$
k_{\text{obsd}} = \frac{k_{\text{raw}}}{1 - \frac{k_{\text{raw}}}{k_{\text{mix}}}}
$$
(4)

Very fast reactions were monitored with a pulsed-accelerated-flow (PAF) spectrophotometer,¹¹⁻¹³ Model IV.^{13,28} The PAF method employs integrating observation during continuous flow mixing of short duration (a 0.4 **s** pulse). The twin-path mixinglobservation cell made of PVC has an optical path length of 2.05 cm. Solutions for all PAF experiments were filtered and degassed. Flow was decelerated during the pulse to give a linear velocity ramp with a velocity range of 12.0- 3.0 **m/s,** during which 250 measurements of transmittance data were taken. Under pseudo-fist-order conditions, the fist-order rate constant k_{obsd} can be determined by using eq 5, where A_{ν} is the absorbance at a

$$
M_{\text{exptl}} = \frac{A_v - A_\infty}{A_0 - A_\infty} = \frac{1}{bk_\text{m}} + \frac{v}{bk_\text{obsd}}
$$
(5)

given instantaneous velocity, A_{∞} is the final absorbance, A_0 is the absorbance at time zero, *b* is the reaction path length (0.01025 m) , *v* is the solution velocity, and k_m is a proportionality constant from the mixing rate constant (k_{mix}) , where $k_m = k_{\text{mix}}/v$. Linear plots of M_{exptl} vs v have slopes of $1/(bk_{\text{obsd}})$. During pulsed-accelerated flow measurements, the solutions, drive syringes, and the mixing cell were thermostated at 25.0 ± 0.1 °C. Each reported rate constant measured by stopped-flow or PAF instruments represents an average of $3-8$ trials.

Results and Discussion

Nitrous Acid Formation and Decay. Under acidic conditions the first observable product for the reaction of bromine with excess hydroxylamine is nitrous acid. The distinctive, fivepeak absorption spectrum²⁹ of nitrous acid in the $330-390$ nm range allows this product assignment to be made with confidence. The formation of HONO indicates that $NH₂OH$ is oxidized by two equivalents of $Br₂$ to convert N(-I) to N(III). Yields of nitrous acid were measured spectrophotometrically at pH 1 by use of either the Perkin-Elmer Lambda-9 or the Durrum stopped-flow instruments. Table 3 gives the conditions and results, which show that 1 mol of HONO is produced for every 2 mol of $[Br_2]_T$ reactant. The first six entries in Table 3 show the percent yield of HONO at pH $1-2$ as $103 \pm 9\%$ based on this stoichiometry. Nitrous acid is the main product even with a twofold excess of $[Br_2]$ over $[NH_2OH]_T$ (first entry in Table 3). No $NO₃⁻$ was detectable at 302 nm for this reaction. This rules out a three-Br₂ oxidation of NH₂OH to NO₃⁻.

The nitrous acid product decays within minutes due to its reaction with excess hydroxylammonium ion. Figure 1 shows two decay curves measured at 371 nm for the reaction of 1.6 \times

- (27) Gazda, M; McDonald, M. **R.;** Margerum, D. W. Unpublished work. (28) Bowers, C. P.; Fogelman, K. D.; Nagy, **J.** C.; Ridley, T. Y.; Wang,
-
- (29) Markovits, G. Y.; Schwartz, S. E.; Newman, L. *Inorg. Chem.* **1981**, 20,445-450.

⁽²⁵⁾ Wang, Y. L. Ph.D. Thesis, Purdue University, West Lafayette, IN, 1989.

⁽²⁶⁾ Dickson, P. N.; Margerum, D. W. *Anal. Chem.* **1986,58,** 3153-3158.

Table 3. Summary of Data for Nitrous Acid/Nitrite Product^a

				[HONO] $_T$ formed		
$p[H^+]_0$	$\text{[NH}_2\text{OH}]_{\text{T}}$ mM	$[Br_2]_T$ mM	$[Br^-]$ M	mM	% vield ^b	HONO $\cos k$, s ⁻¹
1.0	1.06	2.12	0	1.01 ^d	95	c
1.0	17.6	1.6	0	0.87	109	0.0072
1.0	20.2	1.6	0.20	0.82^{e}	102	0.0502e
1.0	25.0	2.25	0	1.3	118	0.0100
1.0	25.0	2.25	0	1.1	97	0.0096
1.9	47.5	4.89	0	2.3 ^f	96	0.0094
5.5	1.5	0.16	0.36	0.076^{d}	91	Ċ
5.6	37.8	0 16	0.36	0.078^{d}	98	\overline{c}
5.7	1.5	0.16	0	0.064^{d}	80	Ċ
5.7	37.8	0.16	0	0.071^{d}	89	\overline{c}
5.9	3.5	0.67	0.15	0.30	89	0.0097s
5.9	5.0	0.67	0.15	0.33	99	0.0097s
5.9	7.56	0.67	0.15	0.33	99	0.0162s
5.9	10.1	0.67	0.15	0.33	99	0.0243 ^s

^a Monitored at 371 nm at 25.0 (± 0.3) °C; ionic strength variable from 0 to 0.50 M. bMole percent $[HONO]_T$ per 0.5 $[Br_2]_T$. \in Not determined. ^d Measured with 10-cm cells. *e* Determined with Durrum stopped-flow at 26.0 "C. *f* Determined at 357 nm by Durrum stoppedflow at 26.0 °C. ℓ Decay of HONO after acidifying product to pH \sim 1.

Figure 1. Durrum stopped-flow data at 371 nm for the reaction of $[NH₂OH]_T = 2.02 \times 10^{-2} M$, $[Br₂]_T = 1.6 \times 10^{-3} M$, $[Br⁻] = 0.2 M$, and $[H^+] = 0.10$ M: (a) loss of $[Br_2]_T$ to form HONO within 30 ms; (b) loss of HONO shown over 50 **s.**

 10^{-3} M $[Br_2]_T$ with 2.02 \times 10⁻² M $[NH_2OH]_T$ at pH 1. The fast decay is due to loss of the $[Br_2]_T$ signal. The subsequent decay is due to loss of HONO. Stedman and co-workers^{5,6} studied the hydroxylamine-nitrous acid reaction and gave the rate expression in eq 6. Their values for k_3 and k_4 were based

$$
-\frac{d[HONO]}{dt} = (k_3[H^+] + k_4[Br^-])[NH_3OH^+][HONO]
$$
\n(6)

on experimental results at 0 °C, $\mu \approx 0.15$ M. We used their activation energy values of 14.7 kcal/mol for k_3 and 11.7 kcal/ mol for k_4 to calculate $k_3 = 2.5 \text{ M}^{-2} \text{ s}^{-1}$ and $k_4 = 4.1 \text{ M}^{-2} \text{ s}^{-1}$ at 25 °C.^{5,6} Authentic mixtures of $[NH_2OH]_T$ and HONO at $[H^+] = 0.117 M (25.0 °C, \mu = 0.52 M)$ in our laboratory gave a second-order rate constant of $0.43 \text{ M}^{-1} \text{ s}^{-1}$, as opposed to their calculated value of $k_3[H^+] = 0.29 \text{ M}^{-1} \text{ s}^{-1}$. Our value is consistent with the rate constants in Table 3 when the bromidecatalyzed path is not significant. The discrepancy in these values may originate from a complex temperature dependence due to terms in the rate law dependent on acid concentrations. The exact conditions used to measure their activation energies were not given. $5,6$

Table 4. Stopped-Flow Data"

$[NH2OH]T$, mM	$[Br_2]_T$, mM	[H+], М	$[Br^-]_i$ mM	k_{obsd} , ^{b} s^{-1}	k_{calcd} , s^{-1}
0.212	0.020	0.10	15	6.29(0.09)	6.28
1.16	0.020	0.10	15	33.3(1.0)	34.2
2.12	0.020	0.10	15	63.6(2.6)	62.7
0.212	0.020	0.10	45	4.88(0.02)	4.76
0.212	0.020	0.10	75	3.96(0.05)	3.92
0.212	0.020	0.0095	15	66.0(5.9)	66.1
0.212	0.020	0.0283	15	22.7(0.4)	22.2
0.212	0.020	0.051	15	11.9(0.3)	12.3
0.212	0.020	0.065	15	9.59(0.30)	9.66
0.212	0.020	0.21	15	3.45(0.04)	2.99
0.212	0.020	0.051	45	9.37(0.26)	9.34
0.212	0.020	0.065	45	7.72(0.19)	7.33
0.212	0.020	0.15	45	3.37(0.05)	3.18
0.212	0.020	0.21	45	2.40(0.01)	2.27
0.125	0.012	0.10	200	1.65(0.01)	1.48
0.125	0.012	0.10	150	1.90(0.01)	1.70
0.125	0.012	0.10	100	2.27(0.01)	2.04
0.125	0.012	0.10	45	3.11(0.05)	2.81
0.125	0.012	0.10	15	4.25(0.23)	3.70
0.125	0.012	0.10	5	4.78 (0.26)	4.19
0.125	0.012	0.20	15	2.15(0.06)	1.85
0.125	0.012	0.30	15	1.48(0.03)	1.23
0.756	0.075	0.5	5	5.91 (0.04)	5.06
15.2	1.4	1.0	0	52.5 (0.9)	54.4

 $\mu = 0.50$ M (NaClO₄), 25.0 \pm 0.3 °C, Durrum stopped-flow instrument, 266 nm. b Numbers in parentheses are the first standard</sup> deviation. ^c Calculated from eq 11 with $k_0 = 1.8 \times 10^9$ M⁻¹ s⁻¹ and k_1 $= 2.4 \times 10^8$ M⁻¹ s⁻¹.

Product Determination at pH 5.5-5.9. The reactions corresponding to the last eight entries in Table 3 were studied at a higher pH range where the initial values, $p[H^+]_0$, were 5.5-5.9. Nitrous acid $(pK_a 2.96)^{22}$ is the product at pH 1, whereas at pH 5-6 nitrite ion is the product. Nitrite is characterized by a broad absorption band with a peak at 355 nm.20 Unlike HONO, NO_2^- is inert in the presence of hydroxylamine. The results in Table 3 show that this pH range has yields of $[HONO]_T$ (where $[HONO]_T = [HONO] + [NO_2^-]$) equal to 93 \pm 7% relative to a 2:1 [Br₂]_T:[HONO]_T stoichiometry, which agrees with the results at pH 1.

Lack of Observable Spectroscopic Intermediates Prior to HONO Formation. Stopped-flow reactions, where [H⁺] ranged from 0.01 to 1.0 M, were examined at several wavelengths but failed to detect any intermediates (such as BrNO, Br₂NOH, or BrNHOH) prior to HONO formation. For the reaction between $Br₂$ and NH₂OH at 357 or 371 nm, two successive first-order decays are observed; loss of $[Br_2]_T$ followed by a slower loss of HONO. At 266 nm, where HONO does not absorb appreciably, only the loss of Br_3^- is seen. If the reaction between bromine and hydroxylamine is fast relative to the stopped-flow time scale, HONO is fully formed within the dead time of the instrument. A slow HONO decay is found, but unlike the chlorine/ $NH₃OH⁺$ system,¹ an absorbance increase signaling the formation of HONO is not seen. The conclusion is that intermediate species (between $NH₂OH$ and $HONO$) are too reactive to be observed under these conditions.

Overall Stoichiometry at pH 1. A series of seven reactions with hydroxylamine in $4-21$ -fold excess of the bromine concentration were performed at room temperature to determine the stoichiometry. After reacting bromine and hydroxylamine, a sufficient time interval (at least 30 min) was allowed so that subsequent reactions between HONO and $NH₃OH⁺$ were complete before measuring excess hydroxylamine by the ironcerium method. The overall stoichiometry of $[Br_2]_T:[NH_2OH]_T$ was (1.01 ± 0.05) :1. This value includes the [NH₂OH]_T that has reacted with nitrous acid. Therefore, the stoichiometry of $[Br_2]_T$ and $[NH_2OH]_T$ is 2:1 on a time scale of seconds, but on

Figure 2. Plot of k_{obsd} vs $[NH_2OH]_T$ as studied by stopped-flow methods with $[Br_2]_T = 2.0 \times 10^{-5}$ M, $[Br^-] = 0.015$ M, and $[H^+] =$ 0.10 M.

a time scale of minutes to hours, the stoichiometry becomes 2:2 in accord with eq 7.

according to the equation
$$
2Br_2 + 2NH_2OH \rightarrow 4Br^- + 4H^+ + N_2O + H_2O
$$
 (7)

Overall Stoichiometry at pH 5.9. The stoichiometry was checked at p[H+] 5.9 with hydroxylamine in *5* to 15-fold excess. All bromine solutions had $[Br^-] = 0.15$ M so that the concentration of HOBr was negligible. The initial pH was 5.9, but the pH decreased during the reaction due to production of $[H^+]$ (eq 7). The pH drop, which ranged from 0.4 to 2.7 pH units, was more pronounced at the lower hydroxylamine concentrations where less self-buffering occurred. The stoichiometry in terms of $[Br_2]_{T}:[NH_2OH]_{T}$ is $(1.1 \pm 0.1):1$, consistent with the results at higher acidity. However, in order to quantitate the excess hydroxylamine by the iron-cerium method, the reaction products must first be acidified. This results in conversion of nitrite to nitrous acid, which reacts 1:1 with the excess hydroxylamine. There was sufficient time for the nitrous acid to decay before quantitation of the excess hydroxylamine. The above experimental stoichiometric ratio includes the hydroxylamine that was lost after acidification.

Rate Expression in Acid. Results from 24 stopped-flow experiments were used to establish a rate expression for the reaction of bromine with hydroxylamine under acidic conditions. Total hydroxylamine was in at least 10-fold excess for all reactions (Table **4),** and HOBr has a negligible concentration under these conditions. The loss of Br_3^- was monitored at 266 nm. Hydroxylammonium ion is transparent at this wavelength. Using eqs 1, 2, and 8, and the definitions of $[NH_2OH]_T$ and

$$
\frac{-d[Br_2]}{dt} = 2k[Br_2][NH_2OH] = k_{obsd}[Br_2]_T
$$
 (8)

 $[Br_2]_T$ leads to eq 9 as the expression for k_{obsd} . The factor of 2

$$
k_{\text{obsd}} = \frac{2k[\text{NH}_2\text{OH}]_{\text{T}}}{(1 + K_{\text{H}}[\text{H}^+])(1 + K_{\text{Br}}[\text{Br}^-])}
$$
(9)

takes into account the 2:1 $[Br_2]_T:[NH_2OH]_T$ stoichiometry observed on the stopped-flow time scale. A typical first-order decay is shown in Figure la. Linear dependencies in **[NHz-**OH]_T and 1/[H⁺] (since $K_H[H^+] \gg 1$) were established and are shown in Figures 2 and 3, respectively. However, a plot to show the bromide ion dependence at constant $[NH_2OH]_T (0.125)$ mM) and constant $[H^+]$ (0.100 M) based on eq 10 (derived from eq 9) revealed two inconsistencies with this model. First,

Figure 3. Plot of k_{obsd} vs 1/[H⁺] as studied by stopped-flow methods with $[NH_2OH]_T = 2.1 \times 10^{-4}$ M, $[Br_2]_T = 2.0 \times 10^{-5}$ M, and $[Br^-] = 0.015$ M.

Figure 4. Plot of $1/k_{\text{obsd}}$ vs [Br⁻] where $[NH_2OH]_T = 1.25 \times 10^{-4}$ M, $[Br_2]_T = 1.2 \times 10^{-5}$ M, and $[H^+] = 0.1$ M. The solid line is the straightline fit based on eq 10. The dotted line is the nonlinear fit based on eq 11.

$$
\frac{1}{k_{\text{obsd}}} = \frac{K_{\text{H}}[H^+]}{2k[\text{NH}_2\text{OH}]_{\text{T}}} + \frac{K_{\text{H}}K_{\text{Br}}[H^+]}{2k[\text{NH}_2\text{OH}]_{\text{T}}}[\text{Br}^-] \tag{10}
$$

although the plot of $1/k_{obsd}$ vs $[Br^-]$ in Figure 4 is almost linear, the points show some curvature. Second, the slope divided by the intercept should give the value of K_{Br} , the tribromide formation constant. However, this gives a K_{Br} value of 10 M⁻¹, which does not agree well with the literature value of 16.8 M^{-1} ¹⁰ The addition of a term for a tribromide reaction path is included to account for these deviations. Equation 11 shows

$$
k_{\text{obsd}}\left(s^{-1}\right) = \frac{2\left[\text{NH}_2\text{OH}\right]_T\left(k_{\text{o}} + k_1K_{\text{Br}}[\text{Br}^-]\right)}{(1 + K_{\text{H}}\left[\text{H}^+\right])(1 + K_{\text{Br}}\left[\text{Br}^-\right])}
$$
(11)

this expression, where k_0 is the rate constant for the bromine path, and k_1 represents the tribromide path. From the data in Figure 4, the values for k_0 and k_1 are determined by iteration (Marquardt algorithm) to be $k_0 = (2.1 \pm 0.2) \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ and $k_1 = (2.4 \pm 0.4) \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ at 25.0 °C. The dotted curve in Figure **4** shows the fit of these rate constants to the experimental data. We believe that this is the best set of data to evaluate k_1 because of the large variation in Br^- concentration at constant $[H^+]$ and $[NH_2OH]_T$ values. However, all 24 sets of data in Table **4,** where the concentrations of H+, NH20H, and Br^- are varied, are used to evaluate k_o . The k_{obsd} values are weighted based on their precision and are used with the above k_1 value and the expression in eq 11 to give $k_0 = 1.8$ (\pm) $(0.1) \times 10^9$ M⁻¹ s⁻¹. This result is almost insensitive to the choice of k_1 . The last column in Table 4 gives the k_{calcd} values for $k_0 = 1.8 \times 10^9$ M⁻¹ s⁻¹ and $k_1 = 2.4 \times 10^8$ M⁻¹ s⁻¹ in order to show their agreement with k_{obsd} .

The suggested mechanism I in acid conditions is shown by eqs $12-16$, where BrNHOH and Br₂NOH are proposed intermediate species. Equations 12 and 13 are the rate

mechanism I

$$
Br_2 + NH_2OH \stackrel{k_0}{\longrightarrow} BrNHOH + Br^- + H^+ \qquad (12)
$$

$$
Br_2 + NH_2OH \rightarrow BHHOH + 2Br + H^+ \quad (12)
$$

$$
Br_3^- + NH_2OH \rightarrow BrNHOH + 2Br^- + H^+ \quad (13)
$$

$$
Br_2 + BrNHOH \xrightarrow{k_2} Br_2NOH + Br^- + H^+(fast)
$$
 (14)

$$
Br_2NOH \to BrNO + H^+ + Br^- \text{(fast)} \quad (15)
$$

$$
BrNO + H2O \rightarrow Br- + HONO + H+ (fast)
$$
 (16)

determining steps and all subsequent reactions are fast. The stoichiometric equation for the reaction of bromine and hy-

droxylamine is given in eq 17, which shows a 2:1
$$
[Br_2]_T:[NH_2-
$$

 $2Br_2 + NH_2OH + H_2O \rightarrow 4Br^+ + HONO + 4H^+$ (17)

 $OH]$ _T ratio to produce HONO. The overall 1:1 stoichiometry (eq 7) is achieved because a second equivalent of hydroxylam-

monium ion reacts with HONO (eq 18). The proposed N-bromo

\n
$$
HONO + NH_3OH^+ \rightarrow N_2O + 2H_2O + H^+ \qquad (18)
$$

intermediates are reasonable, but neither BrNHOH nor Br2NOH have been isolated. However, BrNO (nitrosyl bromide) is a known compound.³⁰ Studies of diazotization mechanisms³¹⁻³⁴ have given BrNO hydrolysis equilibrium and rate constants in water (eq 19). Schmid³¹ reported the hydrolysis equilibrium

$$
BrNO + H_2O \xrightarrow[k_6]{k_f} HONO + H^+ + Br^-
$$
 (19)

constant to be **44.6** at 0 "C and 19.6 at *25* "C, and he reported values of 8×10^6 for k_f and 1.8×10^5 for k_b at 0 °C. Although Schmid did not give any units, he measured time periods in minutes, and other aspects of this paper indicate these rate constants must be in terms of min⁻¹ and M^{-2} min⁻¹, respectively. (We point this out because the *Gmelin Handbook* for bromine compounds³⁰ erroneously reports Schmid's k_f value to be 8 \times 10⁶ s⁻¹, whereas Ridd's review³² correctly divides Schmid's values for other rate constants by 60 to give units of s^{-1} .) Ingold³⁴ reported that the bromide-catalyzed decomposition of HONO had a larger rate constant than the nitritecatalyzed path by a factor of $8/7$, and Schmid³¹ used this ratio to compute his k_b value (3.0 \times 10³ M⁻² s⁻¹) at 0 ^oC. His corresponding k_f value would be 1.3×10^5 s⁻¹.

Hughes and $Ridd^{33}$ used a colorimetric diazotization reaction to obtain a k_b value of 1.17×10^3 M⁻² s⁻¹ at 0 °C. This leads

Table *5.* Temperature Dependence **Study** for the Reaction of Br2 and NH₂OH^a

temp, °C	k_{obsd} , s^{-1}	$K_{\rm Br}$ M^{-1}	$\log K_{\rm H}$	10^{-9} k _o . $M^{-1} s^{-1}$	$\Delta H^{\! *}$. kJ/mol
15.00	2.13(0.03)	18.1	6.243	1.56	19.8
20.05	3.32(0.08)	17.3	6.121	1.82	17.5
24.95	4.91(0.14)	16.8	6.006	2.05	15.3
30.00	7.25(0.19)	15.9	5.895	2.32	13.1
35.00	10.2(0.5)	15.2	5.787	2.52	10.9

^{*a*} [NH₂OH]_T = 1.52 *x* 10⁻⁴ M, [Br₂]_T = 1.5 *x* 10⁻⁵ M, [Br⁻] = 15 mM, $[H^+] = 0.10$ M, and $\mu = 0.50$ M.

to a value of $k_f = 5.2 \times 10^4$ s⁻¹ at 0 °C based on Schmid's equilibrium constant. The activation energy for BrNO hydrolysis has not been reported, but Schmid estimated k_f to be between 10^7 and 10^8 min⁻¹ at 25 °C. Thus, we will consider k_f to be greater than 2×10^5 s⁻¹ at 25 °C.

There are several reasons why we are concemed with the hydrolysis of BrNO. First, the equilibrium constant for eq 19 indicates that under all our conditions the [HONO]/[BrNO] ratios are very large and the hydrolysis reactions to form HONO will be essentially complete. Second, the first-order hydrolysis rate constant is larger than any of our observed rate constants, even at pH $2-6$, so that there is no buildup of BrNO concentration. Third, the reaction between BrNO and $NH₂OH$, which is reported⁶ to have a rate constant of 3.7×10^7 M⁻¹ s⁻¹ at 0° C, should not be competitive with the hydrolysis reaction in eq 16 at any concentrations of NH₂OH used in this work. A direct reaction between BrNO and $NH₂OH$ would give N₂O without the intermediate formation of HONO, whereas we observe nearly quantitative yields of $[HONO]_T$.

Temperature Dependence. The reaction between bromine and hydroxylamine was carried out from 15 to 35 "C to determine the kinetic parameters ΔH^{\dagger} and ΔS^{\dagger} . The reaction conditions were $\text{[NH}_2\text{OH}]_T = 1.52 \times 10^{-4} \text{ M}$, $\text{[Br}_2]_T = 1.5 \times$ 10^{-5} mM, $[Br^-] = 0.015$ M, $[H^+] = 0.10$ M, and $\mu = 0.50$ M. Measured first-order rate constants were converted to secondorder rate constants in accord with eq 11, except that the slower tribromide path could be neglected because only 5% of $[Br_2]_T$ is present as the less reactive tribromide species. Since K_{Br} and *KH* values are a function of temperature, literature values from 15 to 35 "C were used for conversion to the second-order rate constant.^{9,10} Table 5 shows k_{obsd} values, the equilibrium constants used for K_{Br} and K_{H} , and the resulting k_0 values at each temperature. (Individual values for K_{Br} and K_{H} that were not directly reported within the reference were interpolated using the appropriate data.)

From Figure 5 at 25 °C, $\Delta H^{\dagger} = 15 \pm 1$ kJ mol⁻¹ and $\Delta S^{\dagger} =$ -15 ± 1 J mol⁻¹ K⁻¹. However, the experimental points in Figure 5 show curvature, which indicates that the activation enthalpy is not constant with temperature and that an activation heat capacity ΔC_p^* must be taken into account. The curvature of the data was found to be statistically significant.³⁵ A secondorder polynomial fit (see dotted line in Figure 5) can be used to extract ΔH^* and ΔC_p^* as a function of temperature. From 15 to 35 "C, **AP** (see Table **5)** ranges from 20.1 to 10.6 **kJ** mol⁻¹ and $\Delta C_p^* = -440$ J mol⁻¹ K⁻¹. It is likely that the large value of ΔC_p^* results from the breakup or partial breakup of a hydrated structure of Br2, as shown in eq 20. It is noteworthy that the equilibrium hydrolysis of bromine (to form HOBr, Br^- , and H^+) also has a large negative change in heat capacity.19

$$
Br_2(H_2O) \rightleftharpoons Br_2 + H_2O \tag{20}
$$

⁽³⁰⁾ *Gmelin Handbook* **of** *Inorganic and Organometallic Chemistry,* 8th ed.; Merlet, P., Ed., Springer-Verlag: New **York,** 1992; Bromine Supplement, Vol. B2, pp 236-254.

^{(31) (}a) Schmid, H. *Monatsh. Chem.* **1954,** 85,424-440. **(b)** Schmid, **H.;** Fouad, M. G. *Monatsh. Chem.* **1957,** 88, 631-638.

⁽³²⁾ Ridd, **J.** H. *Adv. Phys. Org. Chem.* **1978,** *16,* 1-49.

⁽³³⁾ Hughes, E. D.; Ridd, J. H. *J. Chem. SOC.* **1958,** 82-88.

⁽³⁴⁾ Ingold, C. **K.** *Bull. SOC. Chim. Fr.* **1952,** 667-671.

Figure 5. Eyring plot for the reaction between bromine and hydroxylamine from 15.0 to 35.0 °C with $[NH_2OH]_T = 1.52 \times 10^{-4}$ M, $[Br_2]_T$ $= 1.5 \times 10^{-5}$ M, $[Br^-] = 0.015$ M, and $[H^+] = 0.10$ M. The dotted **line is the polynomial fit.**

Table 6. PAF Data for the Reaction of $Br_2 + NH_2OH^a$

				10^{-3}	10^{-3}	
$[NH2OH]T$, mM	$[Br2]$ _T , mM	$[Br^-]_i$, м	$p[H^+]^b$	k_{calcd}^c s^{-1}	k_{obsd} s^{-1}	kobed $k_{\rm{calcd}}$
25.3	0.17	0.0050	2.01	8.5	8.2(0.1)	0.97
15.2	0.18	0.0049	2.36	11.1	10.2(0.4)	0.92
12.1	0.074	0.0050	2.42	10.4	11.6(0.2)	1.12
12.1	0.066	0.0050	2.54	13.7	13.7(0.5)	1.00
6.05	0.0042	0.297	2.98	5.7	3.9(0.1)	0.68
0.202	0.0083	0.146	5.31 (5.47)	63.3	21.9(0.7)	0.35
0.191	0.0091	0.147	5.47(5.60)	74.6	39(2)	0.53
0.191	0.0087	0.147	5.56(5.71)	89.4	37(4)	0.42
0.191	0.0092	0.147	5.85 (5.86)	110	60(11)	0.55
0.191	0.0093	0.147	5.92 (5.99)	130	59(3)	0.45

^{*a*} 25.0 \pm 0.1 °C, μ = 0.50 M, 266 nm. ^{*b*} Mean [H⁺]_{expu} expressed as $p[H^+]$; the values in parentheses are mean $[H^+]_{\text{calcd}}$ based on one H^+ released per Br₂, expressed as p[H⁺]_{calcd}. ^c Calculated from eq 11; based on $p[H^+]_{\text{caled}}$ values for data above pH 5.3.

A value of 7×10^9 M⁻¹ s⁻¹ can be expected for a diffusioncontrolled rate constant, k_D , in the reaction between neutral species in aqueous solution at 25 °C. This is based on k_D = $8RT/3000\eta$, where η is the viscosity of the solvent.³⁶ The same expression leads to a $\Delta H_{\rm D}$ ⁺ value of 17.4 kJ mol⁻¹ for the activation enthalpy of a diffusion-controlled reaction in water, based on the temperature dependence of the viscosity. Our experimental value of k_0 for the reaction between Br_2 and NH_2 -OH is a factor of **4** less than the diffusion-controlled value. Nevertheless, the experimental ΔH^* value is 2.0 kJ mol⁻¹ less than the ΔH_D^* value rather than being larger. This indicates that some preequilibrium steps with small negative ΔH° values occur prior to the rate-limiting step. We would expect the desolvation of $Br_2(H_2O)$ to have a positive rather than a negative *AHo* value. On the other hand, a weak association complex to form Br_2NH_2OH could account for the results where the k_0 value is the mathematical product of this association constant and the first-order rate constant for its breakup to give $BrNHOH + Br^ + H^{+}$.

Kinetics at pH 2-6. Above pH **2** the rate of the brominehydroxylamine reaction becomes too fast to follow by stoppedflow methods, so the PAF method is used. (Table **6** gives the conditions.) At $p[H^+]$ values of 2.0 to 2.5, measured k_{obsd} values of **8200** to **13** 700 **s-'** were in excellent agreement with values calculated (k_{calcd}) from eq 11. At pH 3, a low concentration of of 8200 to 13 700 s⁻¹ were in excellent agreement with values
of 8200 to 13 700 s⁻¹ were in excellent agreement with values
calculated (k_{calcd}) form eq 11. At pH 3, a low concentration of
 $[\text{Br}_2]_T$ (0.0042 mM) \times 10³) was used to prevent pH change during the reaction.

Excellent PAF plots were obtained, but the *kobsd* value was only 68% of the k_{calcd} value. It was not possible to obtain reliable results from pH **4** to **5,** because the pH change during the reaction was too large without the addition of other buffers. Suitable buffers such as acetic acid react with bromine.

When the initial $p[H^+]$ _o of both reactants was $5.6-6.1$ and the $[NH_2OH]_T/[Br_2]_T$ ratio was 20-24, the buffer capacity of $[NH₂OH]_T$ was sufficient to prevent a large pH change during the reaction, and excellent PAF plots were obtained with k_{obsd} values as large as $60,000 \text{ s}^{-1}$. The pH measured within a few minutes after these reactions was **0.14** to **0.40** pH units less than that of the reactants. This change corresponds to **5/2** H+

released per Br₂ (eq 21) after correction for buffering. Table 6

$$
2Br_2 + NH_2OH + H_2O \rightarrow 4Br^- + NO_2^- + 5H^+ (21)
$$

gives the average H^+ concentration during each reaction, expressed as $p[H^+]$, based on these experimental measurements. However, there are reasons to believe that the actual pH change during the very rapid observed reaction is much less than this. This is because at pH $5-6$ the rate of $Br₂$ loss may be much faster than the rate of $NO₂⁻$ formation. We need to consider the mechanism under these conditions to understand this possibility.

Mechanism at pH 5-6. The Δ pH values, $2(p[H^+]_0 - p[H^+])$, are smallest for the results in Table 6 when the experimental p[H+] values are **5.85** and **5.92.** The PAF plots for these runs were excellent, but the k_{obsd} values are only 50 $f \pm 5\%$ of the expected values (i.e. $k_{obsd}/k_{calc} \approx 0.5$). We propose a shift in the reaction mechanism to explain this. At pH 5.9 the free $NH₂OH$ concentration is much greater than the concentration of the first product, BrNHOH, and NH20H is a much stronger nucleophile than BrNHOH. Hence we propose that all the Br_2 is consumed by NH_2OH , unlike the situation below pH 2 where BrNHOH also reacts with Br₂. However, we must account for the fact that the NO_2^- yield is the same as the HONO yield at low pH. Mechanism I1 is proposed to account for these facts. The initial reactions of Br_2 and Br_3^-

mechanism **I1**

$$
Br2 + NH2OH \xrightarrow{k_0} BrNHOH + Br- + H+
$$
 (12)

$$
Br_3^- + NH_2OH \xrightarrow{k_1} BrNHOH + 2Br^- + H^+ \qquad (12)
$$

2BrNHOH - Br2NOH + NH,OH (22)

$$
Br_2NOH \rightarrow BrNO + H^+ + Br^-
$$
 (15)

$$
BrNO + H2O \rightarrow HONO + Br- + H+
$$
 (16)

$$
HONO \rightleftharpoons NO_2^- + H^+ \tag{23}
$$

(eqs **12** and **13)** are the same as in mechanism I, but there is no contribution from eq **14.** Instead, BrNHOH undergoes disproportionation (eq 22) to form Br_2NOH , which then decays by eq **15** and **16** as in mechanism I. Finally, HONO rapidly loses a proton to give NO_2^- (eq 23). The proposed disproportionation of BrNHOH parallels known reactions of bromamine, 37 where the equilibrium constant for eq 24 is 5×10^9 M⁻¹.

Mechanism II gives an expression for rate constant, k'_{obsd} in eq **25,** where there is no longer a stoichiometric factor of **2** for the rate of loss of $[Br_2]_T$. This explains why k'_{obsd} is half of

⁽³⁶⁾ **Caldin, E. F.** *Fasr Reacrions in* **Solution; Wiley: London, 1964; p 12.**

⁽³⁷⁾ Inman, G. W., Jr.; Johnson, J. D. *Environ. Sci. Technol.* **1984,** *18,* **2 19** - **224.**

5150 *Inorganic Chemistry, Vol. 33, No. 22, 1994*

$$
H^{+} + BrNH_{2} + BrNH_{2} \stackrel{K}{\rightleftharpoons} Br_{2}NH + NH_{4}^{+}
$$
 (24)

$$
k'_{\text{obsd}} = \frac{(k_{\text{o}} + k_1 K_{\text{Br}} [\text{Br}^-]) [\text{NH}_2\text{OH}]_T}{(1 + K_{\text{H}} [\text{H}^+])(1 + K_{\text{Br}} [\text{Br}^-])}
$$
(25)

the k_{calcd} value based on eq 11. Mechanism II requires the loss of Br_2 and Br_3^- prior to the slower disproportionation of BrNHOH. Hence, the BrNHOH concentration will build up before it decays via eqs 22, **15, 16,** and **23.** These reactions were studied at **266** nm where the overwhelming absorbance contribution of Br_3^- masks any absorbance changes caused by the buildup and decay of BrNHOH.

The results at $p[\bar{H}^+] = 5.31$ to 5.56 (Table 6) are consistent with the same explanation,and there is reason to believe that the disproportionation reaction might be slow relative to the rate of loss of $Br₂$. Thus, the rate constant for bromamine disproportionation (eq 24) is reported³⁷ to be 2.4×10^8 M⁻² s^{-1} at 25 °C, so that at pH 6 and 10⁻⁵ M NH₂Br the first halflife for this reaction is **400** s. Even if the BrNHOH disproportionation rate were **lo5** times faster than this, it would still be slow compared to the loss of Br_2 . Therefore, only one H^+ per $Br₂$ (eq 12) would be released during the $Br₂$ loss instead of $5/2H^+$ per Br₂. The p[H⁺] values given in parentheses in Table 5 are calculated for 1:1 release of $H⁺$ and correspond to a much smaller change of pH during the reactions from $p[\bar{H}^+]_{\text{calcd}}$ 5.47 to 5.99. In the worst case, $\Delta pH = 0.24$ during the reaction.

Finally, it should be mentioned that for eq 26 the relaxation rate constant (eq 27)³⁸ will be on the same order of magnitude as the first-order rate constants for Br_2 loss at pH $5-6$. If the

NH₂OH + H⁺
$$
\frac{k_{12}}{k_{21}}
$$
 NH₃OH⁺ (26)

$$
\tau^{-1} = k_{12}[\bar{H}^+] + k_{21}
$$
 (27)

value of k_{12} is 10¹⁰ M⁻¹ s⁻¹ (typical of H⁺ reactions),³⁸ then k_{21} is 10⁴ s⁻¹. Thus at p[\hat{H}^{+}] = 5, τ^{-1} = 1.1 × 10⁵ s⁻¹, while at $p[\bar{H}^+] = 6$, $\tau^{-1} = 2 \times 10^4$ s⁻¹. This effect will also tend to reduce the loss of $NH₂OH$ due to $H⁺$ released during reactions with Br₂.

Unsatisfactory Alternative Mechanism. If rapid hydrolysis of BrNHOH occurs to form nitrosyl hydride (eq **28),** then it would be difficult to form NO_2^- as a reaction product. This is
 $BrNHOH \rightarrow Br^- + HNO + H^+$ (28)

$$
BrNHOH \rightarrow Br^- + HNO + H^+ \tag{28}
$$

because the dehydrative dimerization rate constant of HNO (eq 29) has been estimated³⁹ to be very large, $(1.8-7.2) \times 10^9$ M⁻¹
HNO + HNO \rightarrow N₂O + H₂O (29)

$$
HNO + HNO \rightarrow N_2O + H_2O \tag{29}
$$

 s^{-1} , so N₂O should form as the immediate product. A p K_a value of **4.7** was measured for HNO from pulse radiolysis studies.40 Although the presence of NO^- might reduce the dehydrative dimerization rate, N_2O formation would still be very rapid. An alternative pathway that could lead to $NO₂⁻$ would involve a rapid bromine exchange between BrNHOH and HNO (eq **30)** to give BrNO, which then hydrolyzes (eqs 16 and 23).
 $BrNHOH + HNO \rightarrow BrNO + NH_2OH$ (30)

$$
BrNHOH + HNO \rightarrow BrNO + NH2OH
$$
 (30)

While this mechanism is stoichiometrically consistent, some criticisms can be made. If the HNO reaction with itself is as fast as reported, it is difficult to explain the observed high yields of nitrite if any HNO forms. Furthermore, the reverse reaction of eq **30** seems more favorable than the forward reaction. Since $NH₃OH⁺$ has a p K_a of 6.01 and HNO a p K_a of 4.7, hydroxylamine has a higher proton affinity than NO⁻ by a factor of 20. Therefore, hydroxylamine is likely to have a higher affinity for Br+ than does HNO.

Comparison to the Reaction of Hydroxylamine and Chlorine. It is useful to compare the reactions of hydroxylamine with both bromine and chlorine. On a time scale of milliseconds, CI_2 reacts with NH_2OH in 1 M $[H^+]$ with a 3:1 stoichiometry, oxidizing $N(-I)$ in $NH₂OH$ to $N(V)$ (the suggested intermediate is $Cl₃NO$.¹ In contrast, Br₂ reacts with a 2:1 stoichiometry, oxidizing $N(-I)$ to $N(III)$ (the suggested intermediate is $Br₂NOH$). This comparison reflects the stronger oxidizing strength of chlorine. Kinetically, hydroxylamine reactions with both Cl_2 and Br_2 have similar second-order rate constants for the first step $(1.6 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ for Cl₂¹ compared to 1.8×10^9 M⁻¹ s⁻¹ for Br₂). The association of X₂ with NH₂OH in an encounter complex is expected to be more favorable for $Br₂$ because of its easier octet expansion. The weaker Br-Br bond is easier to break than the Cl-Cl bond. However, the reaction with $Cl₂$ leads to formation of the stronger N-Cl bond. These factors appear to offset one another to give similar rate constants for the formation of XNHOH.

Conclusion

A second-order rate constant of 1.8×10^9 M⁻¹ s⁻¹ has been determined for the reaction between Brz and NH20H at **25.0** $^{\circ}$ C. In acid (pH 0-3), two bromines react in rapid succession to give $Br₂NOH$ as a proposed intermediate that decays rapidly to give HONO. Nitrous acid then reacts more slowly with **NH3-** OH⁺ to give N₂O. At pH 5-6 with excess NH₂OH, a different kinetic stoichiometry is observed, and we propose that all the $Br₂$ is consumed in the first step to give BrNHOH. The fact that $NO₂⁻$ is the product is best explained by the subsequent disproportionation of BrNHOH. The ability to study these fast reactions over a wide pH range by use of stopped-flow and pulsed-accelerated flow methods gives insights into the reaction mechanisms. The initial step proposed in all cases is a $Br⁺$ transfer to form BrNHOH. Subsequent reactions via different pathways are proposed to give Br2NOH and BrNO. The reaction stoichiometry for $[Br_2]_T:[NH_2OH]_T$ changes with time and with acidity, but the first observable product is N(II1) (HONO or $NO₂⁻$).

Acknowledgment. This work was supported by the National Science Foundation Grant **CHE-9024291.** R.C.B. is grateful for the National Needs Fellowship cosponsored by Purdue University, the U.S. Department of Education, and DuPont. J.N.C. is grateful to the NSF for a Research Opportunity Award and to Bucknell University for a sabbatical leave grant.

⁽³⁸⁾ Eigen, M.; DeMaeyer, L. In *Technique* of *Organic Chemistry,* 2nd ed.; Friess, **S.** L., Lewis, E. **S.,** Weissbergen, **A,,** Eds.; Wiley- Interscience: New York, 1963; Vol. VIII, Rates and Mechanisms of Reaction, **Part II, pp** 903, 1036.

⁽³⁹⁾ Bazylinski, D. **A.;** Hollocher, T. C. *Inorg. Chem.* **1985,** *24,* 4285- 4288.

⁽⁴⁰⁾ Gratzel, M.; Taniguchi, **S.;** Henglein, **A.** *Ber. Bunsen-Ges. Phys. Chem.* **1970,** *74,* 1003-1010.

Registry Numbers (supplied by author): Br₂, 7726-95-6; Br₃⁻, 14522-80-6; BrNO, 13444-87-6; BrNH₂, 14519-10-9; NH₂OH, 7803-49-8; NH₂OH·HCl, 5470-11-1; HONO, 7782-77-6; NO₂⁻, 14797-65-0; NzO, 10024-97-2; HNO, 14332-28-6.